
Desperately Seeking ... Optimal Multi-Tier Cache Configurations
Tyler Estro,1 Pranav Bhandari,2 Avani Wildani,2 and Erez Zadok1

1Stony Brook University and 2Emory University

Abstract

Modern cache hierarchies are tangled webs of complexity.
Multiple tiers of heterogeneous physical and virtual devices, with
many configurable parameters, all contend to optimally serve
swarms of requests between local and remote applications. The
challenge of effectively designing these systems is exacerbated
by continuous advances in hardware, firmware, innovation in
cache eviction algorithms, and evolving workloads and access
patterns. This rapidly expanding configuration space has made
it costly and time-consuming to physically experiment with
numerous cache configurations for even a single stable workload.
Current cache evaluation techniques (e.g., Miss Ratio Curves)
are short-sighted: they analyze only a single tier of cache,
focus primarily on performance, and fail to examine the critical
relationships between metrics like throughput and monetary cost.
Publicly available I/O cache simulators are also lacking: they
can only simulate a fixed or limited number of cache tiers, are
missing key features, or offer limited analyses.

It is our position that best practices in cache analysis should
include the evaluation of multi-tier configurations, coupled with
more comprehensive metrics that reveal critical design trade-offs,
especially monetary costs. We are developing an n-level I/O
cache simulator that is general enough to model any cache
hierarchy, captures many metrics, provides a robust set of anal-
ysis features, and is easily extendable to facilitate experimental
research or production level provisioning. To demonstrate the
value of our proposed metrics and simulator, we extended an
existing cache simulator (PyMimircache). We present several
interesting and counter-intuitive results in this paper.

1 Introduction
The vast configuration space of multi-tier caching enables the
design of very complex systems. Several tiers of cache and
persistent storage can be allocated in numerous arrangements.
Moreover, devices can be partitioned into many differently sized
cache segments for separate applications. All of these devices
can be implemented within, and interact with, any number of
independent, large-scale infrastructures (e.g., cloud services,
virtual machines, big data warehouses, distributed systems).
Furthermore, new storage technologies are constantly emerging
(e.g., NVM, 3D flash), introducing additional complexity, greater
capacities, and different cost/performance profiles. Our ability
to dynamically change hardware in live systems (e.g., adding
or deleting RAM, SSD, NVM) has also been increasing, par-

ticularly in cloud environments and virtual machines [15,16,21],
making it significantly easier to reconfigure a cache hierarchy.
Workloads continue to evolve as well, with complex and diverse
access patterns that affect the frequency of data reuse and the
size of working sets, two of the most influential factors in any
caching system [4,14,46,48,58].

Research in cache algorithms and policies is also trying to keep
up with these changes. Machine learning and similar techniques
that leverage historical data are being incorporated into caching
systems to bolster prefetching [63], dynamically switch between
replacement algorithms [45,46,53], or enhance existing eviction
policies [2]. I/O classification has been used to enforce caching
policies and improve file system performance [39]. Multi-tier
cache eviction algorithms that are aware of some or all layers
in the hierarchy at any given time are being developed [14]. The
challenges of cache resource allocation and provisioning are be-
ing investigated as well [5,31]. Zhang et al. introduced CHOPT,
a choice-aware, optimal, offline algorithm for data placement
in multi-tier systems [65]. Algorithms such as CHOPT are
promising solutions for efficiently finding optimal multi-tier con-
figurations, but their bounding assumptions and inability to model
all parameters limit the configuration space they can explore.

Physically experimenting with various cache configurations is
costly and time-consuming, with so many parameters to consider
(e.g., number of tiers, device types and models, caching policies).
A well-known technique for evaluating cache performance
without running experiments is Miss Ratio Curve (MRC) anal-
ysis [7,25,26,54]. MRCs plot the cumulative miss ratio of all
requests in a given workload for some cache eviction algorithm(s)
as a function of cache size. Cache size usually ranges from
one data block to the size required to store every unique block
accessed in the workload, also known as the working set. This
technique has many uses, such as comparing eviction algorithms’
performance for a given workload or identifying optimal cache
size allocations. However, MRCs evaluate the performance of
only a single cache and are not capable of accurately modeling
the complicated interactions between devices in a multi-tier
cache. Recent studies have shown that traditional MRCs are
even sub-optimal for resource allocation in a single layer, since
they admit data with poor locality into the cache. [20].

It is vital that our methods of evaluating caches mature as
storage technologies and cache hierarchies continuously evolve.
For example, examining performance metrics such as latency
or using an MRC to analyze miss ratio as cache size increases
may be misleading without also considering the monetary cost of

purchasing and using the cache. Cost has a non-linear, positive
correlation with cache size, and is fundamentally the primary
constraint when deciding how much cache to include in a system.
If this were not the case, everyone would cache all data in copious
amounts of the fastest DRAM money can buy and back it up
with a huge battery. Furthermore, improved performance does
not directly translate into cost efficiency, especially in a multi-tier
system where devices’ cost and performance characteristics can
vary wildly. The purchase cost of hardware is a simple example.
Ideally, we should be evaluating more comprehensive metrics
such as the total cost of ownership, which combines other metrics
such as power consumption, the cost of labor to maintain a
system, and the projected lifetime of devices given access patterns.
It is also essential that we can freely evaluate the relationship
between metrics (e.g., throughput/$) so we can make educated
design decisions with full awareness of the inherent trade-offs.

The most complete solution would be an n-level I/O cache
simulator that could quickly and accurately evaluate many config-
urations. While there are some advanced CPU cache simulators
available [18,27,38,43,56], storage cache simulators are scarce
and lacking. State-of-the-art storage cache simulators are mostly
outdated; they either can simulate only a single layer or some
fixed set of layers, have limited analysis features, are not easily
extendable, or are simply not released to the public [1, 23, 59].
PyMimircache [62] is a popular open-source storage simulator
with several useful features that is actively maintained. However,
even this simulator is inadequate; it also can simulate only a
single layer of cache with no implementation of back-end storage,
has no concept of write policy, and its analysis features are lim-
ited. The main strength of PyMimircache is its ability to perform
MRC analysis on multiple cache replacement algorithms.

It is our position that best practices in cache research need
to be broadened to reflect the growing multi-tier configuration
space. This paper makes the following contributions:

1. We explore current trends in cache analysis and propose
that best practices in cache research including the analysis
of multi-tier configurations and a more comprehensive set
of evaluation metrics (e.g., monetary cost).

2. We describe the critical features an n-level I/O cache
simulator should have and outline the design of a simulator
we began to develop.

3. We extended PyMimircache to function as a multi-tier
cache simulator, experimented with many configurations
on a diverse set of real-world traces, and present initial
results that support our position.

2 Cache Analysis
The fundamental strategy in engineering a cache hierarchy in-
volves placing faster and typically lower-capacity devices in front
of slower devices to improve the overall latency of accessing
frequently reused data. There is a tangible dollar cost per byte
increase when purchasing hardware with better performance

attributes. Therefore, it follows that the cache size and speed are
closely correlated with the purchase cost. Straightforward logic
dictates that performance is constrained by cost, so unless money
is in endless supply, the best practice should be to evaluate these
metrics together. Surprisingly though, cost is often overlooked
during analysis in favor of performance metrics such as raw
throughput, latency, or hit/miss ratio [10,13–15,20,44,57].

The argument can be made that any improvement in cache
performance translates into a reduction in cost when designing
a cache, such that the relationship between cost and performance
does not necessarily need to be considered. This is situationally
true, particularly when evaluating performance in a single-tier
caching system. However, in a more realistic, multi-tier storage
or CPU cache hierarchy, the large configuration space and
complex interactions between tiers produce scenarios where
the relative performance per dollar between two configurations
is vastly different, necessitating a more complex analysis (see
Section 4 for examples).

Performance metrics have long been the standard in cache
analysis. Recently, additional metrics that are more relevant and
informative for specific applications have gained popularity in
storage research. The 95th (P95) or 99th (P99) percentile latency,
often referred to as tail latency, is an important quality of service
(QoS) metric for cloud [49,61] and web [5,17,24,28] services, as
well as at the hardware level [8,19,32,36]. Inter-cache traffic anal-
ysis has been used to design more efficient cache hierarchies in
modern microprocessors [42]. Reducing the energy consumption
of storage systems is beneficial for the environment, lowers opera-
tion costs, and promotes advancements in hardware design [9,34,
47,52]. Even the total cost of ownership (TCO) can be difficult
to calculate when considering all the factors that contribute to
capital and operational expenditures (CapEx and OpEx) [33,35].

It is our position that cache analysis should be conducted
using a diverse set of metrics whenever possible. These metrics
should be evaluated at various level of granularity: at each
individual layer, some subset of layers, or globally. Moreover,
we need to create complex metrics (e.g., throughput/$) that allow
for analysis of their informative relationships and reveals critical
design trade-offs.

3 Multi-tier Cache Simulation
Simulator Design. A general, n-level I/O cache simulator
with a rich set of features is necessary to thoroughly explore the
multi-tier caching configuration space and analyze our proposed
metrics. We are developing such a simulator that includes (but
is not limited to) the following capabilities: (1) Write policy that
determines where data is placed upon write requests. We will
support traditional write policies (e.g., write through, write back,
write around), but also allow user-defined policies. (2) Admission
policy that controls if and how data is promoted and demoted
throughout the hierarchy by request size, address space, or
simply whether layers are inclusive or exclusive of each other.
(3) Eviction policy that decides which data to evict when a cache
is full and new data needs to be brought in. There will be support

ID Device Type Price Capacity Average Latency (Benchmark Source)
D1 G.Skill TridentZ DDR4 3600MHz C17 DRAM $150 16GB 0.0585µs r/w (UserBenchMark)

D2 G.Skill TridentZ DDR4 3000MHz C15 DRAM $97 16GB 0.0642µs r/w (UserBenchMark)
0.01µs r/w (Vendor)

D3 Corsair Vengeance LPX DDR4 2666MHz C16 DRAM $59 16GB 0.0726µs r/w (UserBenchMark)

S2 HP EX920 M.2 NVMe SSD $118 1TB 292µs read, 1,138µs write (AnandTech)
20µs read, 22µs write (Vendor)

H2 WD Black 7200 RPM HDD $60 1TB 2,857µs read, 12,243µs write (AnandTech)

H3 Toshiba MK7559GSXP HDD $65 750GB 17,000µs read, 22,600µs write (Tom’s HW)
17,550µs read, 17,550µs write (Vendor)

Table 1: Device specifications and parameters. Each device is denoted with a letter and number for brevity (1 is high-end, 2 is mid-range, and 3
is low-end). Devices S1, S3, and H1 are skipped for space considerations. Prices were obtained from Amazon in September 2019. Benchmarked
specifications were correlated from device Vendors, AnandTech [3], Tom’s Hardware [50], and UserBenchmark [51].

for single-layer or global policies, as well as the ability to easily
add new policies. (4) Trace sampling techniques (e.g., Miniature
Simulations [55]) that reduce the size of a trace to greatly de-
crease simulation time while maintaining similar cache behavior.
(5) Prefetching to retrieve data before it is requested with tech-
niques like MITHRIL [64] that exploit historical access patterns.

The associated API will fully expose all data structures at
request-level granularity or for any given real timestamp or
virtual ones (where the trace has only ordered records without
their original timing). This will allow users to perform important
analysis such as examining clean and dirty pages at any level,
measure inter-reference recency, calculate stack distance metrics
when relevant, or perform any type of analysis offered by our
simulation framework on a subset of a trace. The simulator will
also be coupled with modern visualization tools that enable users
to efficiently explore the large amount of data it produces.

Multi-tier Cache Reconfiguration. A major motivation for
simulation is seeking optimal cache configurations. However,
efficiently reconfiguring a multi-tier cache hierarchy is another
challenging problem. In this work, we analyze various physical
devices for simplicity, but manually swapping out devices is
often not a feasible solution. More likely, multi-tier caches
may be dynamically reconfigured in cloud, distributed, and
virtual environments, where storage can more easily be allocated
through virtualization abstractions. For example, distributed
memory caching systems (e.g., Memcached) can greatly benefit
from automatically reconfiguring cache nodes in response
to changes in workload; but this process can significantly
degrade performance as nodes are retired and data is migrated.
Hafeez et al. developed ElMem, an elastic Memcached system
that uses a novel cache-merging algorithm to optimize data
migration between nodes during reconfiguration [22]. Moving
between configurations in any caching system has a temporarily
negative impact on performance, until the new caches are fully
warmed [12,66]. Therefore, efficient reconfiguration methods
are essential to fully leverage any techniques that find optimal
configurations (including simulations).

PyMimircache Extension. To demonstrate the utility of our
proposed simulator, we extended PyMimircache [62], a storage

cache simulator with an easily extendable Python front-end and
efficient C back-end. We made several simplifying assumptions
for this extension and experimented with a subset of the possible
features we are proposing. (1) We implemented a traditional
write-through policy and an “optimistic” write-back policy as
global write policies. The write-through policy is consistent and
reliable: a block is written to every cache layer and the back-end
storage whenever there is a write request. Our write-back policy
is optimistic: it only writes to the first layer and assumes this data
will be flushed to persistent storage at some point in time, outside
of the critical path where it does not affect performance (i.e., we
do not account for the write in any other layer). This simplified
version of write-back models the best-case performance scenario,
which we found useful for exploring the potential effects of write
policy. A more realistic write-back would require asynchronous
functionality that is not available in PyMimircache, and is a
limitation of this work. (2) All evicted blocks are discarded rather
than demoted (moved or copied) to some lower layer of cache
or back-end storage. (3) Layers of DRAM are included in our
simulations even though we are using block traces, which capture
requests for data that was not found in DRAM. This is a limita-
tion of the traces we are using; the simulator we implement will
be able to operate on any data item from any trace that includes
some form of address accesses. The simulator will support
traces obtained from networks (e.g., NFS, HTML), distributed
systems (e.g., HPC, Memcached), system calls, block traces, and
potentially more. (4) Throughput is limited by the system where
traces were actually captured since we experiment with block
traces. For demonstration purposes, we ignore this limitation
and assume requests are fed as fast as possible without using the
original request timestamps. This allows us to show how we can
potentially evaluate throughput when using different hardware
configurations. (5) We consider each layer to have a portion of
its capacity partitioned for caching to emulate various cache
sizes at each layer using the specifications of a single device.

A high-level description of how we extended PyMimircache
is as follows: (1) We feed an original block I/O trace to an
instance of PyMimircache, this is the top layer (“L1”) of our
cache hierarchy. (2) This instance generates two output files:
i) A log file “L1-log” containing counters for the following: read

hits, write hits, read misses, write misses, data read, data written.
ii) We specify a new trace file called “L1-trace” which contains
read requests that missed in L1, as well as all write requests. As
per our assumptions, write requests are not included when using
write-back policy and evicted blocks from L1 are never included.
These intermediate trace files are stored in memory using
Python-based virtual files to avoid disk I/O costs. (3) After the
L1 instance of PyMimircache completes, we feed the generated
“L1-trace” from step 2 as input into another, separate instance of
PyMimircache. This emulates our L2 layer. (4) We repeat steps
2–3 for L2, L3, etc. (5) When all layers have been processed, we
aggregate all the log data into a single log file for that experiment.
(6) We have a higher-level script that we pass parameters to
for each layer’s device: purchase cost, capacity, and average
read and write latencies. This script records and calculates the
following metrics for the cache configuration of an experiment:
total purchase cost, partitioned device capacities, miss ratio per
layer, and total read and write latency incurred. It can be [re]run
at any time using previously obtained simulation logs, and is
separate from the actual simulation process.

4 Evaluation
Workloads. In this section, we evaluate simulation results gath-
ered using the Microsoft Research (MSR) traces. These 36 traces,
each about a week long, were collected from 36 different volumes
on 13 production servers at MSR in Cambridge, Massachusetts,
as described in detail by Narayanan et al. [40]. The percentage
of total requests that access unique blocks (i.e., data used for
the first time) in these traces range from 1% to 97%, which is
representative of the frequency of data reuse. The percentage
of total requests that are writes range from nearly 0% to almost
100%, and is ideal for evaluating the effects of write policies.

We are continuing to run additional experiments using 9
traces from the Department of Computer Science at Florida
International University (FIU) [52] and 106 traces from
CloudPhysics [54], but do not present results here due to space
limitations.
Experimental setup. We ran simulations on the MSR traces
using between 1 and 3 layers of cache, in addition to the back-end
storage device. Each simulation consisted of a configuration
of several parameters: cache and back-end sizes, eviction
algorithms, and global write policy. The capacity required to hold
the entire working set of a trace dictated the cache and back-end
storage sizes for every configuration. The back-end size was
always fixed to be the same size as the working set, since the data
initially resides in the back-end. The cache sizes selected for the
first layer of cache are 100 evenly spaced sizes between 1 block
(512 bytes) and the size of the working set for that trace. 100
is the default number of points for plotting MRCs with PyMimir-
cache. The second and third layers of cache are 10 evenly spaced
sizes within the same range. Using 10 cache sizes for these
layers rather than 100 drastically reduced the time required to
complete each experiment while still revealing the entire range
of metrics (albeit with fewer data points within that range).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Scaled Purchase Cost ($1000's)

0

50

100

150

200

250

300

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

)

D1-H3 (wt)
D2-H3 (wt)
D3-H3 (wt)
D2-S2-H3 (wt)

Figure 1: Effects of an intermediate SSD tier (Workload MSR hm-1)

In this work, we only present results for configurations
using a Least Recently Used (LRU) eviction policy at every
layer, although we are varying these policies in our ongoing
simulations. We simulated each of the MSR traces using our
extension of PyMimircache (see Section 3) and then calculated
cost and performance metrics using the device specifications
described in Table 1.

While these comprehensive traces represent a wide variety of
workloads, they have only a relatively small working-set size that
can easily fit in a modern server’s RAM. Therefore, to simulate
larger workloads (e.g., bigdata, HPC), we treat the original MSR
traces as if they were scaled-down spatial samples of larger
traces. We call this technique reverse-mini-sim: the reverse of
the miniature simulations technique for down-scaling traces
introduced by Waldspurger et al. [55]. Miniature simulations
was shown to be fairly accurate at a sampling rate of 0.001 on
the MSR traces, so we multiply the purchase cost (X axis) by a
factor of 1,000 times: this simulates a workload whose working
set size is 1,000× larger.

Each data point in our figures represents a configuration with
some set of cache sizes. We assume that each layer consists of
an independent device with a portion of its capacity partitioned
for caching and the remaining capacity as unused. For example,
a cyan triangle in Figure 1 at Total Scaled Purchase Cost of
around $235 represents the average throughput of all requests
in a single simulation of the hm-1 trace with an L1 LRU cache
of 61,865 blocks partitioned in device D2, an L2 LRU cache
of 199,344 blocks partitioned in device S2, and back-end storage
of device H3 partitioned to fit the working set of 687,396 blocks.

Cache hierarchy depth. Figure 1 shows (D1-H3, red) that
too little RAM hurts performance but too much wastes money.
Adding a bit of SSD cache (D2-S2-H3, cyan) between DRAM
and HDD (D2-H3, green) can help, but not always (some cyan
dots are below the green line). Consider the knee of D1-H3
(around X=$500): there are D2-S2-H3 configurations that
provide higher throughput for the same cost, same throughput
for less cost, and even both higher throughput and less cost.
Surprisingly, we also see that purchasing more of a cheaper
DRAM (D3-H3, blue) for the same cost of a more expensive
DRAM (D1-H3) yields overall better performance. Therefore,

0 25 50 75 100 125 150 175 200
Total Scaled Purchase Cost ($1000's)

0

50

100

150

200

250

300

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

) D1-H2 (wt)
D1-S2-H2 (wb)

D1-S2-H2 (wb,2x)
D1-S2-H2 (wb,3x)

Figure 2: SSD Aging Effects (Workload MSR src2-1). 2× and 3×
indicate configurations where S2 has 2–3× increased latency due to
the potential effects of SSD aging

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Total Scaled Purchase Cost ($1000's)

0

10

20

30

40

50

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

)

D2-H3 (wt,bench)
D2-H3 (wt,vendor)
D2-S2-H3 (wt,bench)
D2-S2-H3 (wt,vendor)

Figure 3: Variation between vendor-reported specs and independently
operated benchmarks (Workload MSR web-3)

we can sacrifice DRAM performance for a larger amount of
DRAM to get better results.

Solid-state drive (SSD) degradation. Storage devices have
an expected lifetime which is typically defined by some amount
of I/O. For example, it is well-known that the memory cells
within SSDs can only be written to a finite number of times
before they are no longer usable [29,37,41]. While the lifespan of
devices is a parameter that should be considered when estimating
the total cost of ownership of a storage system over some period
of time, it is also important to evaluate the performance impact
this aging process can have. Studies have shown that SSD aging
can increase average latency by around 2–3× [30]. To simulate
this effect, we multiplied the latency specifications of device S2
and analyzed the results alongside simulations using its original
specifications. Figure 2 shows that while a new SSD (D1-S2-H2,
green triangles) improves performance when inserted into a D1-
H2 tier (red), when the SSD is aged (blue and cyan), performance
is actually worse than not having the SSD at all. For users with
write-heavy workloads or infrastructures where these devices are
expected to receive a lot of I/O traffic over a short period of time,
choosing to exclude SSDs completely may not only save money,
but also yield a similar or better average throughput over time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Scaled Purchase Cost ($1000's)

0

200

400

600

800

1000

1200

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

)

D1-H3 (wt)
D1-S2-H3 (wt)
D1-S2-H3 (wb)

Figure 4: Write-through vs. Write-back policy effects (Workload MSR
hm-1)

Device specification variance. Storage vendors want to con-
vince consumers that their latest device is competitive. They do
so by publishing many device specifications: storage capacity,
physical dimensions, hardware interface, durability, energy con-
sumption, and performance metrics. While most specifications
are fairly standard, a wide variation of performance metrics can be
found, even amongst the same type of device and vendor. Some
commonly found metrics are the minimum, average, median, or
maximum values for latency, bandwidth, or throughput. These
metrics may also be further refined as random or sequential work-
loads, or separated by reads and writes. These measurements are
obtained via benchmarks using some specific workload(s), soft-
ware environment, and hardware configuration, which are some-
times disclosed at varying levels of detail. This poses a significant
problem for consumers, who often are unable to reproduce ven-
dors’ performance results. Given such a vast configuration space
of variables that can affect performance and the understandable
motivation for vendors to publish optimistic results, how can stor-
age devices be reliably compared for their own usage? A handful
of independent, reputable websites have emerged by fixing these
variables and benchmarking devices from different vendors, and
producing realistic, trustworthy specifications: AnandTech [3],
Tom’s Hardware [50] and UserBenchmark [51].

In this experiment we show the difference between numbers
reported by vendors and others. Figure 3 shows that inserting
an SSD tier between DRAM and HDD provides equal or better
performance when using vendor reported specifications (green
and cyan). However, specifications obtained from Anandtech [3]
(red and blue) show that the majority of the configurations yield
worse average throughput.

Write Policy. The write policy of a cache hierarchy determines
how and where data is written whenever there is a write request.
Write-through policy ensures data consistency by writing data to
every cache and storage device in the hierarchy. However, this in-
curs the write latency of every device and negatively impacts over-
all performance. The write-back policy improves performance
over write-through by only writing to the cache and then flushing
data to back-end storage at a more favorable time. The downside
of write-back is that data is at risk of being lost in the event that

a cache device fails or whole system loses power. If reliability is
more important, a write-through policy is the obvious choice, but
how much impact will this have on performance? Figure 4 com-
pares write-through and write-back policies (policy implementa-
tions described in Section 3). Using an optimistic write-back (wb)
policy we achieve up to 6× better throughput for the same cost
as write-through (wt) with the same devices. Note that a more
accurate write-back policy will account for the delayed writes,
which will tie up the storage devices even during idle times.

5 Related Work
Modern processors are designed with multiple cores, each con-
taining multiple tiers of cache, as well as a shared cache. Several
architecture simulators have been developed and are widely used
by industry and academia to facilitate engineering, research, and
education [18, 27, 38, 43, 56]. One example of this is gem5, a
popular architecture simulator that has been actively developed
for nearly two decades [6]. It supports multiple ISAs and can
accurately model complex multi-level non-uniform cache hier-
archies with heterogeneous memories. Architecture simulators
such as gem5 have great value, but are fundamentally different
than storage simulators. Complex cache replacement algorithms
that are designed specifically for storage devices (e.g., SAC [11]
and GCaR [60]) could not be reasonably implemented in an ar-
chitecture simulator. Architecture simulators are typically driven
by binaries or instruction-level traces, and could not operate on
traces captured at the block, network, or system call layers.

Conversely, storage cache simulators are scarce and lacking in
features. Accusim was developed to evaluate the performance im-
pact of kernel prefetching [1]. It was designed specifically for file
system caching and can not to model n tiers. SimIdeal is a multi-
tier simulator that implements several cache replacement and
write policies [23]. It hard-codes the number of tiers to four and
forces evictions to the immediate lower layer, and thus cannot sup-
port inclusive caching. There are also a handful of outdated simu-
lators such as Pantheon [59]. Unfortunately, there are few storage
cache simulators available, and caching research is commonly
done using proprietary simulators that are not available publicly.

6 Conclusion
Designing and evaluating cache hierarchies has become
incredibly complex due to the expanding multi-tier configuration
space. In this work, we analyzed the deficiencies of single-tier
cache analysis and common cache evaluation metrics. We
propose that best practices in cache research should include
the analysis of multi-tier systems, as well as the evaluation of
a more comprehensive set of metrics (particularly monetary
cost) and their relationships. We are developing an n-level I/O
cache simulator with a rich set of features and analysis tools
that is capable of modeling any cache hierarchy. We extended
PyMimircache to function as a multi-tier cache simulator and
experimented with a wide variety of workload. We presented
interesting and counter-intuitive results that demonstrate the need
for our proposed simulator and multi-tier analysis.

7 Acknowledgements
We thank the anonymous HotStorage reviewers, our shepherd
Michael Mesnier, and Carl Waldspurger for their valuable feed-
back. This work was made possible in part thanks to Dell-EMC,
NetApp, and IBM support; and NSF awards CCF-1918225, CNS-
1900706, CNS-1729939, CNS-1755958, and CNS-1730726.

8 Discussion Topics
Our proposal includes redefining best practices in cache research
and the development of a sophisticated simulator with many
features. We find the following discussion topics to be of interest
and valuable to this line of work:

1. What features should be included in a multi-tier cache
simulator? We give a high-level view of the features we
believe to be necessary in Section 3, but are we missing
anything important?

2. How a feature is implemented determines how useful
it is for the research community. For example, eviction
policies can include a single layer, global awareness, or
machine-learning algorithms; it can also have support for
users to easily define their own. What is important within
each feature we implement?

3. We consider monetary cost to be the primary metric when
designing any caching system. How important is monetary
cost? Are there more important metrics to consider?

4. The ability to reconfigure a cache hierarchy in real-time is
considerably valuable, especially in multi-tenant scenarios
where resizing involves repartitioning across tenants. What
is a good time-frame for a simulator to produce valuable
results that are not already stale? What policy parameters
could be changed dynamically?

5. We propose best practices in cache research that should
include the evaluation of multi-tier hierarchies, analyzed
using a diverse set of metrics. What else should be a part
of best practice?

6. Under what circumstances would evaluating caching
(system performance, design, algorithms, etc.) not benefit
from a multi-tier analysis?

7. Are there any issues we are not taking into consideration
(e.g., missing features, future technologies, algorithmic
solutions)?

8. We are currently developing a general, n-level I/O cache sim-
ulator by building on top of PyMimircache. Is there a better
simulator to use as a foundation, and if so, why is it better?

References
[1] Accusim: Accurate simulation of cache replacement

algorithms, March 2020. https://engineering.purdue.edu/
∼ychu/accusim/ .

[2] Waleed Ali, Sarina Sulaiman, and Norbahiah Ahmad.
Performance improvement of least-recently-used policy
in web proxy cache replacement using supervised machine
learning. In SOCO, 2014.

[3] Anandtech: Hardware news and tech reviews since 1997.
www.anandtech.com.

[4] Dulcardo Arteaga, Jorge Cabrera-Gámez, Jing Xu,
Swaminathan Sundararaman, and Ming Zhao. Cloudcache:
On-demand flash cache management for cloud computing.
In FAST, 2016.

[5] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha
Sen, and Mor Harchol-Balter. Robinhood: Tail latency
aware caching - dynamic reallocation from cache-rich to
cache-poor. In OSDI, 2018.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,
Nilay Vaish, Mark D. Hill, and David A. Wood. The
gem5 simulator. SIGARCH Computer Architecture News,
39(2):1—7, August 2011.

[7] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. mpart:
Miss-ratio curve guided partitioning in key-value stores.
In ISMM, 2018.

[8] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan,
Saugata Ghose, Kevin Hsieh, Donghyuk Lee, Tianshi Li,
Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
Understanding latency variation in modern DRAM chips:
Experimental characterization, analysis, and optimization.
In Proceedings of the 2016 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of
Computer Science, SIGMETRICS’16, pages 323–336,
New York, NY, USA, 2016. ACM.

[9] X. Chen, N. Khoshavi, J. Zhou, D. Huang, R. F. DeMara,
J. Wang, W. Wen, and Y. Chen. Aos: Adaptive overwrite
scheme for energy-efficient mlc stt-ram cache. In 2016
53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2016.

[10] Xian Chen, Wenzhi Chen, Zhongyong Lu, Peng Long,
Shuiqiao Yang, and Zonghiu Wang. A duplication-aware
SSD-based cache architecture for primary storage in
virtualization environment. IEEE Systems Journal,
11(4):2578–2589, December 2017.

[11] Zhiguang Chen, Nong Xiao, and Fang Liu. Sac: Rethinking
the cache replacement policy for ssd-based storage systems.
In Proceedings of the 5th Annual International Systems
and Storage Conference, SYSTOR ’12, New York, NY,
USA, 2012. Association for Computing Machinery.

[12] Yue Cheng, Aayush Gupta, Anna Povzner, and Ali R. Butt.
High performance in-memory caching through flexible
fine-grained services. In Proceedings of the 4th Annual

Symposium on Cloud Computing, SOCC ’13, New York,
NY, USA, 2013. Association for Computing Machinery.

[13] Yuxia Cheng, Wenzhi Chen, Zonghui Wang, Xinjie Yu, and
Yang Xiang. AMC: an adaptive multi-level cache algorithm
in hybrid storage systems. Concurrency and Computation:
Practice and Experience, 27(16):4230–4246, 2015.

[14] Yuxia Cheng, Yang Xiang, Wenzhi Chen, Houcine Hassan,
and Abdulhameed Alelaiwi. Efficient cache resource aggre-
gation using adaptive multi-level exclusive caching policies.
Future Generation Computer Systems, 86:964 – 974, 2018.

[15] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Dynacache: Dynamic cloud caching. In 7th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 15), Santa Clara, CA, July 2015. USENIX
Association.

[16] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16),
pages 379–392, Santa Clara, CA, March 2016. USENIX
Association.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, February 2013.

[18] Dinero iv trace-driven uniprocessor cache simulator.
http://pages.cs.wisc.edu/∼markhill/DineroIV/ .

[19] Nosayba El-Sayed, Ioan A. Stefanovici, George
Amvrosiadis, Andy A. Hwang, and Bianca Schroeder.
Temperature management in data centers: Why some
(might) like it hot. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS’12, pages 163–174, New York,
NY, USA, 2012. ACM.

[20] Jianyu Fu, Dulcardo Arteaga, and Ming Zhao. Locality-
driven mrc construction and cache allocation. In
Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, HPDC
’18, pages 19–20, New York, NY, USA, 2018. ACM.

[21] U. U. Hafeez, M. Wajahat, and A. Gandhi. ElMem:
Towards an Elastic Memcached System. In Proceedings
of the 38th IEEE International Conference on Distributed
Computing Systems, pages 278–289, Vienna, Austria, 2018.

[22] U. U. Hafeez, M. Wajahat, and A. Gandhi. Elmem:
Towards an elastic memcached system. In 2018 IEEE
38th International Conference on Distributed Computing
Systems (ICDCS), pages 278–289, 2018.

[23] Alireza Haghdoost. Sim-ideal, Dec 2013.
https://github.com/arh/sim-ideal/tree/master.

[24] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety,
Ricardo Bianchini, and Kathryn S. McKinley. Few-to-
many: Incremental parallelism for reducing tail latency

in interactive services. In Proceedings of the Twentieth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS’15,
pages 161–175, New York, NY, USA, 2015. ACM.

[25] Lulu He, Zhibin Yu, and Hai Jin. Fractalmrc: Online
cache miss rate curve prediction on commodity systems.
2012 IEEE 26th International Parallel and Distributed
Processing Symposium, pages 1341–1351, 2012.

[26] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,
Zhenlin Wang, Chen Ding, and Chencheng Ye. Fast
miss ratio curve modeling for storage cache. TOS,
14:12:1–12:34, 2018.

[27] Dr. Shaily Jain and Nitin Nitin. Memory map: A
multiprocessor cache simulator. Journal of Electrical and
Computer Engineering, 2012, 09 2012.

[28] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang,
Yuxiong He, Sameh Elnikety, Alan L. Cox, and Scott
Rixner. Predictive parallelization: Taming tail latencies
in web search. In Proceedings of the 37th International
ACM SIGIR Conference on Research & Development in
Information Retrieval, SIGIR’14, pages 253–262, New
York, NY, USA, 2014. ACM.

[29] N. Jeremic, G. M’́uhl, A. Busse, and J. Richling. The pit-
falls of deploying solid-state drive RAIDs. In Proceedings
of the 4th Annual International Conference on Systems and
Storage, SYSTOR ’11. ACM, 2011.

[30] M. Jung and M. Kandemir. Revisiting widely held SSD
expectations and rethinking system-level implications.
In Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’13, pages 203–216, New York,
NY, USA, 2013. ACM.

[31] Ricardo Koller, Akshat Verma, and Raju Rangaswami.
Generalized erss tree model: Revisiting working sets.
Performance Evaluation, 67:1139–1154, 2010.

[32] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the tail: Hardware, OS, and
application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, SoCC’14,
pages 9:1–9:14, New York, NY, USA, 2014. ACM.

[33] Z. Li, M. Chen, A. Mukker, and E. Zadok. On the
trade-offs among performance, energy, and endurance in
a versatile hybrid drive. ACM Transactions on Storage
(TOS), 11(3), July 2015.

[34] Z. Li, M. Chen, and E. Zadok. Greendm: A versatile
hybrid drive for energy and performance. Technical report,
Stony Brook University, 2013. Paper under review.

[35] Z. Li, A. Mukker, and E. Zadok. On the importance of
evaluating storage systems’ $costs. In Proceedings of the
6th USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’14, 2014.

[36] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, Andreas Terzis,
and Feng Zhao. RACNet: A high-fidelity data center
sensing network. In Proceedings of the 7th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys’09,
pages 15–28, New York, NY, USA, 2009. ACM.

[37] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of flash-
based storage through reducing write amplification from file
systems. In In Proceedings of the 11th USENIX Symposium
on File and Storage Technologies (FAST ’13), 2013.

[38] Rano Mal and Yul Chu. A flexible multi-core functional
cache simulator (fm-sim). In Proceedings of the Summer
Simulation Multi-Conference, SummerSim ’17, San
Diego, CA, USA, 2017. Society for Computer Simulation
International.

[39] Michael Mesnier, Feng Chen, Tian Luo, and Jason B.
Akers. Differentiated storage services. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 57–70, New York, NY, USA,
2011. ACM.

[40] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enterprise
storage. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST 2008), 2008.

[41] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD failures in datacenters: What? when? and why?
In Proceedings of the Ninth ACM Israeli Experimental
Systems Conference (SYSTOR ’16), pages 7:1–7:11, Haifa,
Israel, May 2016. ACM.

[42] A. V. Nori, J. Gaur, S. Rai, S. Subramoney, and H. Wang.
Criticality aware tiered cache hierarchy: A fundamental
relook at multi-level cache hierarchies. In 2018 ACM/IEEE
45th Annual International Symposium on Computer
Architecture (ISCA), pages 96–109, June 2018.

[43] Massachusetts Institute of Technology. Dynamorio:
Dynamic instrumentation tool platform, February 2009.
http://www.dynamorio.org/ .

[44] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang,
and Timothy Wood. Multi-cache: Dynamic, efficient
partitioning for multi-tier caches in consolidated VM
environments. In 2016 IEEE International Conference on
Cloud Engineering (IC2E), pages 182–191, April 2016.

[45] R. Salkhordeh, S. Ebrahimi, and H. Asadi. Reca: An effi-
cient reconfigurable cache architecture for storage systems
with online workload characterization. IEEE Transactions
on Parallel and Distributed Systems, 29(7):1605–1620,
July 2018.

[46] Ricardo Santana, Steven Lyons, Ricardo Koller, Raju
Rangaswami, and Jason Liu. To arc or not to arc. In
HotStorage, 2015.

[47] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating
performance and energy in file system server workloads.
In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), pages 253–266, San Jose,
CA, February 2010. USENIX Association.

[48] Carl Staelin and Hector Garcia-molina. Clustering active
disk data to improve disk performance. Technical Report
CS-TR-298-9, Princeton University, NJ, USA, 1990.

[49] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja
Feldmann. C3: Cutting tail latency in cloud data stores
via adaptive replica selection. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’15, pages 513–527, Berkeley, CA,
USA, 2015. USENIX Association.

[50] Tom’s hardware: For the hardcore pc enthusiast.
www.tomshardware.com.

[51] Userbenchmark. www.userbenchmark.com.

[52] A. Verma, R. Koller, L. Useche, and R. Rangaswami.
SRCMap: Energy proportional storage using dynamic con-
solidation. In Proceedings of the 8th USENIX Conference
on File and Storage Technologies, FAST’10, 2010.

[53] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez,
Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao,
and Giri Narasimhan. Driving cache replacement with
ml-based lecar. In HotStorage, 2018.

[54] Carl A. Waldspurger, Nohhyun Park, Alex Garthwaite, and
Irfan Ahmad. Efficient mrc construction with shards. In
FAST, 2015.

[55] Carl A. Waldspurger, Trausti Saemundson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In Proceedings of the
2017 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’17, pages 487–498, Berkeley,
CA, USA, 2017. USENIX Association.

[56] Han Wan, Xiaopeng Gao, Xiang Long, and Zhiqiang
Wang. Gcsim: A gpu-based trace-driven simulator for
multi-level cache. In Yong Dou, Ralf Gruber, and Josef M.
Joller, editors, Advanced Parallel Processing Technologies,
pages 177–190, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[57] Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng. An
efficient design and implementation of multi-level cache
for database systems. In DASFAA, 2015.

[58] A. Wildani, E. L. Miller, and L. Ward. Efficiently identi-
fying working sets in block I/O streams. In Proceedings
of the 4th Annual International Conference on Systems and
Storage, SYSTOR ’11, pages 5:1–5:12. ACM, 2011.

[59] John Wilkes. The pantheon storage-system simulator. 1996.

[60] Suzhen Wu, Yanping Lin, Bo Mao, and Hong Jiang.
Gcar: Garbage collection aware cache management with

improved performance for flash-based ssds. In Proceedings
of the 2016 International Conference on Supercomputing,
ICS ’16, New York, NY, USA, 2016. Association for
Computing Machinery.

[61] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael
Bailey. Bobtail: Avoiding long tails in the cloud. In
Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, NSDI’13, pages
329–342, Berkeley, CA, USA, 2013. USENIX Association.

[62] Juncheng Yang. PyMimircache. https://github.com/1a1a11a/
PyMimircache. Retrieved April 17, 2019.

[63] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani
Wildani, and Ymir Vigfusson. MITHRIL: mining sporadic
associations for cache prefetching. CoRR, abs/1705.07400,
2017.

[64] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani
Wildani, and Ymir Vigfusson. Mithril: Mining sporadic
associations for cache prefetching. In Proceedings of the
2017 Symposium on Cloud Computing, SoCC ’17, pages
66–79, New York, NY, USA, 2017. ACM.

[65] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vig-
fusson. Optimal data placement for heterogeneous cache,
memory, and storage systems. In Proceedings of the ACM
SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’20,
2020. To appear.

[66] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and
Michael A. Kozuch. Saving cash by using less cache. In
Proceedings of the 4th USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’12, page 3, USA, 2012.
USENIX Association.

